Design and Construction of Affordable and Domestic Device for Carbon Nanoparticle Synthesis

Design and Construction of Affordable and Domestic Device for Carbon Nanoparticle Synthesis Aykutlu, Dilara; Okursoy, Berkay; Kocum, Ismail Cengiz; Cokeliler Serdaroglu, Dilek Nanoparticles are structures below 100 nanometer and used for molecular imaging with gene therapy, implementation of many biomedical applications such as biosensor, cancer-pathology diagnosis and treatment, targeted drug-making and therefore superior in application areas. The aim of the study is to develop a device that synthesizes carbon nanoparticles by dense medium plasma method; together with hardware, software and mechanical design. Dense medium plasma is an easy synthesis approach with low cost; However, it is necessary for the user of this device to be more comfortable to use, feasible, portable and suitable for market. Moreover there is no commercial device for synthesing carbon nanoparticles by dense medium plasma technique. This research presents details of construction of affordable device for carbon nanoparticle sythesis. Prototype is an unique domestic product and contains integrated hardware, software and mechanical probe parts. Hardware part consists of control, power unit and induction coil unit and these three units are connected to each other. The power unit ensures that the mosfets are triggered by a certain voltage from the control unit. The induction coil unit is induced by turning the low voltage to high voltage. In the mechanical part, probe design supplies discharge betweeen electodes which are fed by argon gase that converts benzene to the carbon nanoparticles. The probe reaches the resonance frequency and to make it easier to adjust the distance between the bottom and top electrode, a spindle system is used. Software operation is measuring high voltage. To make the appliance portable, moreover wheeled table production was done. As a result, signal and power card tests were made, it was observed that the high voltage circuit, the signal circuit and the induction coil cause radiation. More nanoparticle production was achieved with the controllable distance between the bottom electrode and the top electrode of probe. The efficiency of the synthesis was improved and the usage of the device was made practical. Finally prototype device that is usable for synthesis nanoparticles by dense medium technology is constructed affordablity and presented with all details.

Design and Construction of Affordable and Domestic Device for Carbon Nanoparticle Synthesis

Design and Construction of Affordable and Domestic Device for Carbon Nanoparticle Synthesis Aykutlu, Dilara; Okursoy, Berkay; Kocum, Ismail Cengiz; Cokeliler Serdaroglu, Dilek Nanoparticles are structures below 100 nanometer and used for molecular imaging with gene therapy, implementation of many biomedical applications such as biosensor, cancer-pathology diagnosis and treatment, targeted drug-making and therefore superior in application areas. The aim of the study is to develop a device that synthesizes carbon nanoparticles by dense medium plasma method; together with hardware, software and mechanical design. Dense medium plasma is an easy synthesis approach with low cost; However, it is necessary for the user of this device to be more comfortable to use, feasible, portable and suitable for market. Moreover there is no commercial device for synthesing carbon nanoparticles by dense medium plasma technique. This research presents details of construction of affordable device for carbon nanoparticle sythesis. Prototype is an unique domestic product and contains integrated hardware, software and mechanical probe parts. Hardware part consists of control, power unit and induction coil unit and these three units are connected to each other. The power unit ensures that the mosfets are triggered by a certain voltage from the control unit. The induction coil unit is induced by turning the low voltage to high voltage. In the mechanical part, probe design supplies discharge betweeen electodes which are fed by argon gase that converts benzene to the carbon nanoparticles. The probe reaches the resonance frequency and to make it easier to adjust the distance between the bottom and top electrode, a spindle system is used. Software operation is measuring high voltage. To make the appliance portable, moreover wheeled table production was done. As a result, signal and power card tests were made, it was observed that the high voltage circuit, the signal circuit and the induction coil cause radiation. More nanoparticle production was achieved with the controllable distance between the bottom electrode and the top electrode of probe. The efficiency of the synthesis was improved and the usage of the device was made practical. Finally prototype device that is usable for synthesis nanoparticles by dense medium technology is constructed affordablity and presented with all details.